Project systems theory

Resit exam 2016-2017, Wednesday 12 April 2017, 14:00-17:00

Problem 1

Consider the model of a tank in which two fluids are mixed, given as

$$
\begin{aligned}
\dot{h}(t) & =\frac{q_{C}(t)+q_{H}(t)-c \sqrt{h(t)}}{A} \\
\dot{T}(t) & =\frac{q_{C}(t)\left(T_{C}-T(t)\right)+q_{H}(t)\left(T_{H}-T(t)\right)}{A h(t)} .
\end{aligned}
$$

Here, h is the height of the fluid level of the tank and T is the temperature. The constants $c>0$ and $A>0$ represent the geometry of the tank, whereas T_{C} and T_{H} are the constant temperatures of the inflowing (cold and hot) fluids, with $0<T_{C}<T_{H}$. Finally, q_{C} and q_{H} model the inflow and are regarded as control parameters. Thus, take

$$
x(t)=\left[\begin{array}{c}
h(t) \\
T(t)
\end{array}\right], \quad u(t)=\left[\begin{array}{c}
q_{C}(t) \\
q_{H}(t)
\end{array}\right]
$$

as the state and input, respectively.
(a) Show that, for any desired equilibrium $h(t)=\bar{h}, T(t)=\bar{T}$ satisfying

$$
\bar{h}>0, \quad T_{C} \leq \bar{T} \leq T_{H}
$$

there exists a unique constant input $q_{C}(t)=\bar{q}_{C}, q_{H}(t)=\bar{q}_{H}$ that achieves this equilibrium.
(b) Linearize the tank model around the equilibrium point $h(t)=\bar{h}, T(t)=\bar{T}$ and corresponding input $q_{C}(t)=\bar{q}_{C}, q_{H}(t)=\bar{q}_{H}$, as obtained in (a).
(c) Is the linearized system (internally) stable?

Problem 2

Consider the family of polynomials

$$
\mathcal{P}(\lambda)=\left\{\lambda^{3}+\theta_{2} \lambda^{2}+a \lambda+\theta_{0} \mid a \leq \theta_{2} \leq 3 a, 2 a \leq \theta_{0} \leq 4 a\right\}
$$

with a a real number. Determine for which values of a the family of polynomials $\mathcal{P}(\lambda)$ is stable (recall that a family $\mathcal{P}(\lambda)$ is stable if each polynomial belonging to $\mathcal{P}(\lambda)$ is stable).

Problem 3

Consider the system

$$
\dot{x}=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
-2 & -1 & 1 \\
0 & 0 & 2
\end{array}\right] x+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u .
$$

(a) Is the system controllable?
(b) Find a nonsingular matrix T and real numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that

$$
T^{-1} A T=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
\alpha_{1} & \alpha_{2} & \alpha_{3}
\end{array}\right], \quad T^{-1} B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

(c) Use the matrix T from problem (b) to obtain a state feedback of the form $u=F x$ such that the closed-loop system matrix $A+B F$ has eigenvalues at $-1,-1$, and -2 .

Problem 4

$$
(4+4+4+4+4=20 \text { points })
$$

Consider the system

$$
\dot{x}=\left[\begin{array}{ccc}
6 & 1 & 0 \\
0 & -3 & 0 \\
-8 & -1 & -2
\end{array}\right] x+\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] u, \quad y=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] x .
$$

Answer the following questions and explain your answers:
(a) Is the system (internally) stable?
(b) Is the system stabilizable?
(c) Is the system observable?
(d) Is the system detectable?
(e) Determine the unobservable subspace.

Problem 5

Prove that the characteristic equation for the matrix

$$
M=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & & 0 \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & & & \ddots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-m_{n} & -m_{n-1} & -m_{n-2} & \cdots & -m_{2} & -m_{1}
\end{array}\right]
$$

is given as

$$
\Delta_{M}(\lambda)=\lambda^{n}+m_{1} \lambda^{n-1}+\ldots+m_{n-1} \lambda+m_{n} .
$$

(10 points free)

